Crohn's Disease Forum » Books, Multimedia, Research & News » Study -possible effect of human microbiome on vaccine effectiveness

08-10-2012, 10:06 PM   #1
Senior Member
Join Date: Dec 2011
Study -possible effect of human microbiome on vaccine effectiveness

Thought this was interesting. Was funded by Canadian crohns and colitis foundation. Link from Jonathan eisen talk comments
Open Access
Should the Human Microbiome Be Considered When Developing Vaccines?

Rosana B. R. Ferreira, L. Caetano M. Antunes, B. Brett Finlay*
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
Citation: Ferreira RBR, Antunes LCM, Finlay BB (2010) Should the Human Microbiome Be Considered When Developing Vaccines? PLoS Pathog 6(11): e1001190. doi:10.1371/journal.ppat.1001190

Editor: Glenn F. Rall, The Fox Chase Cancer Center, United States of America

Published: November 18, 2010

Copyright: © 2010 Ferreira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: RBRF and LCMA are supported by postdoctoral fellowships from the Canadian Institute for Health Research (CIHR). BBF is an HHMI International Research Scholar and The University of British Columbia Peter Wall Distinguished Professor. Work in his lab is funded by operating grants from the CIHR and the Canadian Chron's and Colitis Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: [email protected]

The human microbiome, especially in the intestinal tract has received increased attention in the past few years due to its importance in numerous biological processes. Recent advances in DNA sequencing technology and analysis now allow us to better determine global differences in the composition of the gut microbial population, and ask questions about its role in health and disease. Thus far, roles of these commensal bacteria on nutrient acquisition, vitamin production, and intestinal development have been identified [1]. Furthermore, resistance or susceptibility to a number of diseases, including inflammatory bowel disease, obesity, enteric infections, and most recently ectopic diseases, have been linked to the intestinal microbiota [1], [2]. Data on the mechanisms through which the intestinal microbiota impacts host immune development have also begun to emerge [2]. The impact of the intestinal microbiota on host physiology is undeniable, and experiments using germ-free, mono-, and poly-colonized mice have addressed many aspects of the microbiota's influence on the mammalian immune system.

Despite all the increased attention on the interface between the microbiota and host immune responses, it is still unclear whether these commensal bacteria affect the efficacy of vaccines. Due to its impact in the development of immune function, both in the gut and other organs, it is reasonable to consider that the intestinal microbiota will significantly affect how individuals respond to vaccine antigens [3], [4]. For example, segmented filamentous bacteria present in the intestinal microbiota have been shown to induce maturation of intestinal T cell adaptive functions [5]. Moreover, it has been shown that the intestinal microbiota exerts a profound effect on the metabolism of certain drugs and toxins [1], [6], and this may also indicate that oral vaccines could be differentially processed by the body depending on variations in microbial communities between individuals. Hence, the microbiota could be an underappreciated yet important player to consider in the development of vaccines, and also may help explain some of the discrepancies observed in vaccine efficacy in different populations around the world.

Clinical trials testing the efficacy of oral vaccines against polio, rotavirus, and cholera have showed a lower immunogenicity of these vaccines in individuals from developing countries when compared to individuals from the developed world [7]–[11]. Clinical trials for a killed oral cholera vaccine in Swedish and Nicaraguan children have also shown blunted antibody responses in Nicaraguan children compared to Swedish children [11]. In a study testing a live cholera oral vaccine, Lagos and colleagues [12] demonstrated that excessive bacterial growth in the small intestine of children in less developed countries might contribute to the low antibody response to the vaccine. Different vaccine strains of Shigella flexneri also showed differential protection on individuals from developing countries. In a study testing Bangladeshi adults and children, no significant immune response to this vaccine was mounted, although the same antigen was reactogenic in North American individuals [13]. Altogether, these data highlight that individuals from different parts of the world can mount different immune responses to the same vaccine. Several hypotheses that may explain this phenomenon exist. For instance, socioeconomic conditions, nutritional status, host genetics, and earlier exposure to related microorganisms are some of the aspects that could contribute to the disparity in the vaccine efficacies in different populations. However, one poorly explored possibility is that the composition of the intestinal microbiota of these individuals may also be a determining factor of vaccine efficacy. In a way analogous to the hygiene hypothesis [14], which states that reduced exposure to microorganisms at an early age may lead to increased susceptibility to allergies, it is possible that the gut microbiota of individuals with increased exposure to microorganisms (and therefore antigens) make them more tolerant to vaccination, being unable to mount a proper response compared to individuals living in better socioeconomic conditions.

Discerning the effects of genetic and environmental factors on vaccine efficacy is a challenging task. Large clinical trials involving individuals from different areas of the world will likely be required to shed light on whether the blunt immune responses to some of the oral vaccines mentioned herein are a consequence of genetic factors or environmental variations, such as the gut microbial community. Studies involving immigrant volunteers could be useful in addressing this issue by providing a clear distinction between the effects of genetics and the environment. Although this is still an open question, data in the literature suggest a more direct link between the intestinal microbiota composition and the development of immune responses to certain vaccine antigens. For instance, the use of antibiotics in chickens has been shown to increase the antibody response following immunization [15]. Because antibiotic treatment will have profound effects on the intestinal microbiota, it is tempting to hypothesize that the microbial populations of these animals are important players in their immunological response to the vaccine antigens. Furthermore, certain probiotic strains have been shown to enhance antibody responses to oral vaccines against rotavirus [16], Salmonella [17], polio [18], and cholera [19] in human volunteers, and this effect was observed after a short period (1–5 weeks) of probiotic treatment. The positive effect of probiotics on immune responses was also seen in parenterally administered vaccines against diphtheria, tetanus, Haemophilus influenzae type B, and hepatitis B [20]–[22] in infants after a 6-month period. Because of the number of licensed oral-administered human vaccines available is limited, studies on how the intestinal microbiota affect parenterally administered human vaccines would have a more significant impact on human health. However, in all studies cited above, there was no long-term follow-up on the enhanced effects of the probiotics on vaccine efficacy. Additionally, more detailed studies on the establishment of the probiotic strains within the resident microbiota will be required to establish minimal doses and treatment regimens, important aspects that need to be addressed if the microbiota is to be considered in vaccine development in the future. It has also been suggested that prebiotics, which are compounds that can enhance the proliferation of certain commensals, can enhance the efficacy of oral vaccines. Recently, a well-studied fructo-oligosaccharide prebiotic has been shown to improve the efficacy of a vaccine against Salmonella infection [23]. In this study, administration of the prebiotic prior to vaccination improved host responses and rates of protection against infection in mice. Unfortunately, the authors were unable to show significant changes in microbiota composition, possibly due to the lack of detailed analyses. In another study, Vos et al. [24] showed that a prebiotic mixture containing galacto- and fructo-oligosaccharides enhanced systemic adaptive immune responses in a murine influenza vaccination model. In this case, increased proportions of certain members of the microbiota could be observed, suggesting a role for the microbial community in the increased host immune response.

Although some studies indicate that the microbiota may play an important role in vaccine efficacy, this area of research is still in its infancy. For instance, the mechanisms involved in the pro- and prebiotic enhancement of vaccine efficacy mentioned above are largely unknown. Nevertheless, current knowledge of the effect of the intestinal microbiota on the development of not only local but also systemic immune functions provides a direct link between commensal populations in the intestine and immune responses to vaccine antigens [3], [4]. We now have the tools to study and take advantage of what the microbiota has to offer in order to enhance host responses to vaccines, with the use of probiotics or prebiotics as adjuvants. Studies using animal models with defined intestinal microbial communities can be helpful to evaluate the effect of intestinal commensals on the immune response to vaccines. However, animal models can only partially elucidate this issue and, although cumbersome, studies in human volunteers will be essential in defining the effect of commensals in vaccine efficacy. We suggest that the study of the relationships between individual commensal populations of humans and responses to vaccines will be instrumental in our quest to improve general vaccine development. By taking into consideration the microbial populations of geographically diverse groups of individuals, we may be able to develop better-targeted vaccines that will improve protection against multiple pathogens.

Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90: 859–904. FIND THIS ARTICLE ONLINE
Abt MC, Artis D (2009) The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 25: 496–502. FIND THIS ARTICLE ONLINE
Umesaki Y, Setoyama H (2000) Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect 2: 1343–1351. FIND THIS ARTICLE ONLINE
Bos NA, Meeuwsen CG, Wostmann BS, Pleasants JR, Benner R (1988) The influence of exogenous antigenic stimulation on the specificity repertoire of background immunoglobulin-secreting cells of different isotypes. Cell Immunol 112: 371–380. FIND THIS ARTICLE ONLINE
Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, et al. (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31: 677–689. FIND THIS ARTICLE ONLINE
Wilson ID, Nicholson JK (2009) The role of gut microbiota in drug response. Curr Pharm Des 15: 1519–1523. FIND THIS ARTICLE ONLINE
John TJ (1993) Experience with poliovaccines in the control of poliomyelitis in India. Public Health Rev 21: 83–90. FIND THIS ARTICLE ONLINE
Patriarca PA, Wright PF, John TJ (1991) Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review. Rev Infect Dis 13: 926–939. FIND THIS ARTICLE ONLINE
Hanlon P, Hanlon L, Marsh V, Byass P, Shenton F, et al. (1987) Trial of an attenuated bovine rotavirus vaccine (RIT 4237) in Gambian infants. Lancet 1: 1342–1345. FIND THIS ARTICLE ONLINE
Suharyono, Simanjuntak C, Witham N, Punjabi N, Heppner DG, et al. (1992) Safety and immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR in 5-9-year-old Indonesian children. Lancet 340: 689–694. FIND THIS ARTICLE ONLINE
Hallander HO, Paniagua M, Espinoza F, Askelof P, Corrales E, et al. (2002) Calibrated serological techniques demonstrate significant different serum response rates to an oral killed cholera vaccine between Swedish and Nicaraguan children. Vaccine 21: 138–145. FIND THIS ARTICLE ONLINE
Lagos R, Fasano A, Wasserman SS, Prado V, San Martin O, et al. (1999) Effect of small bowel bacterial overgrowth on the immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR. J Infect Dis 180: 1709–1712. FIND THIS ARTICLE ONLINE
WHO (2006) Future needs and directions for Shigella vaccines. Wkly Epidemiol Rec 81: 51–58. FIND THIS ARTICLE ONLINE
Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299: 1259–1260. FIND THIS ARTICLE ONLINE
Brisbin JT, Gong J, Lusty CA, Sabour P, Sanei B, et al. (2008) Influence of in-feed virginiamycin on the systemic and mucosal antibody response of chickens. Poult Sci 87: 1995–1999. FIND THIS ARTICLE ONLINE
Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T (1995) Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 13: 310–312. FIND THIS ARTICLE ONLINE
Fang H, Elina T, Heikki A, Seppo S (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol 29: 47–52. FIND THIS ARTICLE ONLINE
de Vrese M, Rautenberg P, Laue C, Koopmans M, Herremans T, et al. (2005) Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr 44: 406–413. FIND THIS ARTICLE ONLINE
Paineau D, Carcano D, Leyer G, Darquy S, Alyanakian MA, et al. (2008) Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol 53: 107–113. FIND THIS ARTICLE ONLINE
West CE, Gothefors L, Granstrom M, Kayhty H, Hammarstrom ML, et al. (2008) Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatr Allergy Immunol 19: 53–60. FIND THIS ARTICLE ONLINE
Kukkonen K, Nieminen T, Poussa T, Savilahti E, Kuitunen M (2006) Effect of probiotics on vaccine antibody responses in infancy—a randomized placebo-controlled double-blind trial. Pediatr Allergy Immunol 17: 416–421. FIND THIS ARTICLE ONLINE
Soh SE, Ong DQ, Gerez I, Zhang X, Chollate P, et al. (2010) Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant Hepatitis B vaccination. Vaccine 28: 2577–2579. FIND THIS ARTICLE ONLINE
Benyacoub J, Rochat F, Saudan KY, Rochat I, Antille N, et al. (2008) Feeding a diet containing a fructooligosaccharide mix can enhance Salmonella vaccine efficacy in mice. J Nutr 138: 123–129. FIND THIS ARTICLE ONLINE
Vos AP, Haarman M, Buco A, Govers M, Knol J, et al. (2006) A specific prebiotic oligosaccharide mixture stimulates delayed-type hypersensitivity in a murine influenza vaccination model. Int Immunopharmacol 6: 1277–1286. FIND THIS ARTICLE ONLINE
Son (age 13) dx Crohn's October 2011 (age 10)
Azathioprine 10/2011-11/2012
Remicade October 2012
krill oil, multivitamin, liquid Vitamin D/Calcium/Magnesium, zinc, pro-thera complete probiotic.

"The decision to have a child is to accept that your heart will forever walk about outside of your body" Katherine Hadley

Crohn's Disease Forum » Books, Multimedia, Research & News » Study -possible effect of human microbiome on vaccine effectiveness
Thread Tools

All times are GMT -5. The time now is 01:44 PM.
Copyright 2006-2017